
Scoop: a hybrid, adaptive storage policy for sensor networks
Thomer M. Gil and Samuel Madden

CSAIL, Massachusetts Institute of Technology
Email: {thomer,madden}@csail.mit.edu

Abstract— One problem with existing store-and-query sensor networks
is that they fail to take data and query rates or network topology informa-
tion into account. This leads to expensive (and avoidable) communication
overhead that reduces the lifespan of battery-powered sensor networks.
Scoop reduces this overhead (up to a factor of four in our experiments) by
dynamically creating and adapting an in-network storage policy based on
statistics it collects about data, queries, and network conditions. Whereas
existing in-network storage techniques are often at the extreme ends of the
storage policy spectrum (e.g., store all data externally on a basestation, or
store all data locally), Scoop’s storage policy allows it to adapt between
these extremes depending on the situation. The intuition behind our
scheme is that data should be stored close to where it is needed, if it is
needed. If query rates are high relative to the rate of data production,
Scoop adapts its storage policy to store data closer to the source of
queries. If query rates are low, the policy adapts to store data closer to
its source. We have built a complete implementation of Scoop for TinyOS
motes [3] and evaluated its performance on a 62-node testbed and in
the TinyOS simulator, TOSSIM. Our results show that Scoop not only
provides substantial performance benefits over alternative approaches on
a range of data sets, but is also able to efficiently adapt to changes in
the distribution and rates of data and queries.

I. INTRODUCTION

Most existing approaches for data storage in store-and-query sensor
networks can be broadly classified into one of two categories. One
group of systems (e.g., Cougar [23] and TinyDB [15]) stores all data
externally on a basestation; at the other extreme, systems store all
data in-network (i.e., on sensor nodes), either by using some static
hash-like function to map and send data to some remote sensor [19],
[13], or by simply storing it locally, on the sensor where the data was
collected. These existing storage approaches are typically tuned to
work best for a particular query workload and data rate. For example,
existing in-network approaches only work well when a small fraction
of the total data items are ever accessed by a query; when every
data item is queried, an external storage approach works better.
Furthermore, none of these approaches account for variations in query
rates or network conditions, leading to wasted communication that
dramatically reduces the lifespan of battery-powered sensor networks.

In contrast, our system, Scoop, dynamically adapts its storage
policy based on statistics about data, queries, and network conditions.
The intuition behind our scheme is that data should be stored close
to where it is needed, if it is needed. If query rates are high relative
to data rates, Scoop adapts its storage policy to store data closer
to the source of queries. If query rates are low, Scoop stores data
closer to its source. That way, Scoop chooses the best policy for the
current query workload and data distribution, allowing it to transition
between the extremes of purely external or purely local storage.

Scoop expresses the desired storage policy in a storage assignment
that is distributed throughout the network and tells each sensor where
to store its data. A storage assignment can be thought of as a
(periodically changing) map from values to a network location. Here,
values could be, for example, simple temperature readings or possibly
more complex values that are the outcome of some computation
over one or more attributes. The basestation periodically recreates
and redistributes this storage assignment based on various statistics
it collects. By adjusting the storage assignment, Scoop can reduce

the overall communication overhead by a factor of four (in our
experiments) compared to existing techniques, despite the additional
overhead created by distributing the storage assignment.

The usage model we envision is one where a user deploys a
sensor network to collect one or more numerical attributes (such as
temperature, humidity, light, or vibration) of the environment and
then occasionally sits down at a basestation (a regular PC) connected
to the sensor network to issue queries (in this work we focus on
one-shot queries, but our techniques generalize to standing queries
as well). The system does not know at deployment-time when or at
what interval the user will do this, what her queries will look like,
and at what rate she will issue these queries. Some example queries
that we might expect to see are “find sensors with a temperature in
range 20-40 degrees” or “find sensor with highest humidity during
time T1-T2”. In response to queries, the basestation uses the storage
assignment as an index to identify nodes with relevant readings, sends
them the query, and passes the reply to the user.

There are a number of applications where our techniques are
relevant. Consider, for example, a sensornet deployed for monitoring
a factory floor that uses sensors on equipment to measure, for
example, temperature or vibrational energy in a certain frequency
band. Real-world examples of such deployments (e.g., [2]) typically
consist of some number of battery powered nodes on different pieces
of equipment. (Batteries obviate the need for expensive and possibly
dangerous power wires.) Though current deployments (like [2]) typi-
cally send all sensor readings to a centralized basestation for analysis,
a more power-efficient approach would be to collect readings on
the nodes, possibly pre-process them locally, and store the values
at or near the detecting nodes in the network. Users would then
query the history of readings relevant to their interests. Different
users might query for different types of readings: a maintenance
worker may be interested in recent problematic conditions (e.g.,
temperatures or vibrational energy over some threshold), whereas a
foreman or line manager may be interested in a longer-term history
of machine temperature profiles or power consumption. Depending
on the application and the rates of data production and querying,
users may query for most or all of the values over time, or they may
query for only a small subset of the total readings that are detected
and stored. Scoop is designed to perform well on either workload.

We have built a complete implementation of Scoop for TinyOS
motes [3] and evaluated its performance on a 62-node testbed and in
the TinyOS simulator, TOSSIM. Our results show that Scoop not only
provides substantial performance benefits over alternative approaches
on a range of data sets, but is also able to efficiently adapt to changes
in the distribution and rates of data and queries. In this paper, we
focus on our experiences building a usable system for this kind of
a medium scale (order 100 node) mote-based sensor network. Our
approach is not designed to scale to very large networks of motes.
Rather, we view heterogeneity and hierarchy as the way to scale up
network size: we imagine assembling several medium-scale networks
each running Scoop and connecting the basestations of these networks
together through higher bandwidth networks (e.g., 802.11) rather than



simply adding motes to our current network. This appears to be the
approach taken by most large sensornet deployments [7], [2].

Scoop includes a number of features that are not present in existing
sensor network query systems ([15], [23]). First, Scoop monitors and
efficiently collects statistics about changes in the distribution and
rates of data and queries, as well as changes in network conditions.
Secondly, Scoop adaptively and strategically places data in the
network (based on those statistics) making it very power efficient
across a range of conditions. Finally, Scoop runs on current, low-
power mote hardware, uses standard and well-understood networking
protocols, and does not rely on hard-to-implement features such as
localization, geographic routing, or precise time synchronization.

This paper describes our goals and challenges in Section II,
explains desirable properties of a storage policy and outlines Scoop’s
algorithm to create one in Section III, and motivates various aspects
of Scoop’s design in Section IV.

II. GOALS AND CHALLENGES

Scoop operates on a network of nodes that sample data at a certain
sample rate. Periodically, the user issues queries over this data from
a basestation at a certain query rate. Queries consist of a range of
values or a list of nodes to be queried. In this work, we focus on
one-shot queries over one or more indexed attributes.

Scoop is designed to work on current mote-class hardware; our
implementation runs on Mica2 and Cricket nodes [3] and is written
in TinyOS [9]. Hence, we assume an environment with limited
power and radio bandwidth. We believe these resources will remain
relatively scarce into the near future. Current trends suggest that the
cost-per-bit of radio transmission will continue to dominate the cost to
store and retrieve data from memory—even relatively power-hungry
non-volatile flash. For example, it costs about 28 nJ to write 1 bit
to a current-generation Micron Technology 128 Mbit NX25P32 flash
chip. Reads are substantially cheaper. In contrast, current generation
802.15.4 radios consume about 15 mJ of power per second, for a
total energy consumption of about 700 nJ/bit, making radio about
two orders of magnitude more expensive than flash per transmitted
(or stored) bit.

Scoop, therefore, aims to minimize the communication overhead
by storing data in-network. It handles changes in data rates, query
rate, and network conditions by continuously collecting statistics
from nodes and using these at the basestation to periodically create
a storage assignment—a mapping from attribute values to network
location. Rather than simple attribute values, a storage assignment
can also map more complex values that are the outcome of some
computation over one or more attributes, but in this paper we focus
on building and maintaining a storage assignment over the values of a
single attribute. (Like multiple indices in a database system, building
multiple storage assignments for different sets of sensor readings
or multi-dimensional storage assignments over multiple attributes is
possible; see Section VI.)

Implementing this basic idea presents a number of challenges.
First, the basestation needs to periodically create a storage assignment
that strategically assigns data to certain network locations to minimize
communication overhead (Section III). Secondly, Scoop needs to
efficiently collect relevant statistics from nodes and send them to
the basestation (Section IV-B) to be used as input to the algorithm
that builds a storage assignment. Thirdly, Scoop needs to efficiently
disseminate storage assignments to sensors (Section IV-C) and deal
gracefully with the scenario when this (partially) fails due to packet
loss. In addition, sensors need to route their data according to the

storage assignment without keeping full routing state (Section IV-
D). Finally, we need a query/reply mechanism on top of all this
(Section IV-E).

III. STORAGE ASSIGNMENT

This section motivates the design of Scoop’s storage assignment.
We first divide existing storage techniques for store-and-query sensor
networks into three categories and briefly review each one.

One possible sensor network storage technique is “send-to-base”:
sensors send all their data to the basestation through a network routing
tree rooted at the basestation. This is relatively simple to implement
and queries can be satisfied at no cost (since all data is present at
the basestation). Unfortunately, it can be wasteful: the system invests
energy in sending data to the basestation where it might never be
used. Secondly, depending on data rates, the network may become
saturated if all sensors try to send data simultaneously, resulting in
high loss. Note, however, that send-to-base is efficient when most
data items are queried and the query rate is higher than data rates.

The second category is “store-local”: sensors store sampled data
locally. The basestation floods queries through the entire network;
sensors send their reply back. Unfortunately, this is expensive since
only a fraction of the sensors may actually have relevant data. In
contrast to send-to-base, store-local is efficient when data rates are
much higher than the query rate.

A third category is a variation on “store-local”: DHT-style systems
that hash data to a certain location in the network. GHT [19], for
example, stores data in the network by hashing data to a geographic
location and routing the data to the nearest node. Queries for certain
values can be similarly hashed and routed to the appropriate node(s).
Queries are relatively efficient because they can be routed to just the
relevant node(s), but, unfortunately, all data must be sent to a random
destination that may be far from the node producing it. In particular,
this approach will not perform well if more data is produced than
queried. However, if queries eventually select most or all of the data
(the only case where this approach appears attractive), then a “send-
to-base” approach will be almost as good (modulo problems related
to overloading nodes close to the basestation).

Send-to-base and store-local are two ends of the storage policy
spectrum that Scoop spans to form an adaptive storage policy: data is
stored closer to the basestation when the query rate is higher than data
rates, and data is stored closer to the source when data rates are higher
than query rates. Each value is stored on a specific node, similar to
DHT-style systems, but in Scoop the location is not determined by a
static hash function but by a storage assignment that is periodically
updated by the basestation and then broadcast to all nodes.

A storage assignment is a value to node
Temperature
time: T1-T2

values node
20-22 2
23-26 1
27-28 5

...
...

34-36 2

Fig. 1. A storage assign-
ment for temperature.

ID mapping. In this paper we simply
map attributes ranges to node ID, as il-
lustrated in Figure 1. One such mapping
exists per attribute, per time period. The
basestation creates a storage assignment
based on statistics over the previous few
minutes/seconds. (In our experiments, the
basestation recreates a new storage assign-
ment every 4 minutes). The mapping is
chosen to minimize the total number of
messages the system sends. This approach
relies on the insight that recently sensed

values are likely to be a good predictor of values a node produces
in the near future; this temporal correlation has been shown to be



present in practice in sensor data in several recent papers on the use
of statistical models for sensor value prediction [10], [5].

Figure 1 shows a temperature storage assignment for time period
T1-T2. The node on the right hand side is responsible for storing all
temperature readings in the left column, during T1-T2. Nodes may
have multiple non-overlapping ranges assigned to them, like node 2.

Clearly, the particular assignment of values to nodes impacts the
communication overhead. For example, assigning a value that is
queried very frequently to a location far away from the basestation
will result in high query/reply overhead. Storing the value on a node
closer to the basestation reduces this overhead, but now the cost of
sending messages from nodes who produce this value to that node
may increase. Similarly, mapping a value v to a node p that is more
likely to produce v reduces the overhead of sending p’s data.

Our algorithm for selecting a storage assignment is guided by the
following design principles that a communication efficient storage
assignment should follow: P1: In the absence of other changes, if
the data rate goes up, data should be stored closer to the source (or
the source itself) to avoid sending that data across many hops. P2: In
the absence of other changes, if the query rate goes up, data should be
stored closer to the basestation to avoid sending queries and replies
across many hops. P3: In the absence of other changes data should
be stored closest to the location where it is most likely going to be
produced. P4: The storage assignment should take network conditions
into account to avoid, for example, forcing a node to send data to
another node over a lossy link, causing expensive retransmissions.

The algorithm the basestation runs periodically to find a storage
assignment is outlined in Figure 2. (We focus on salient details of
the algorithm rather than other, less important details of the real
implementation.) The goal is to find one owner, o, for each value, v,
i.e., the node that is responsible for storing all readings of v. The set
of value → node mappings is the storage assignment. (Section IV-B
discusses how the basestation actually obtains these statistics.)

for all values: v { [v = value]
for all sensors: o { [o = owner]

for all sensors: p { [p = producer of v]
cost(o) += P(p produces v) × ratep ×

xmits(p → o)
}
cost(o) += P(user queries v) × query rate ×

xmits(base → o → base)
}
storage assignment[v] = argmin

o
(cost(o))

}

ratex: the rate at which node x produces data
P(X): the probability that X happens
xmits(x → y): the estimated number of transmissions

required to get a packet from x to y.

Fig. 2. Storage assignment algorithm.

The outer loop iterates over all possible values v of the attribute
to find an owner for it by simply trying out all possible nodes as
owner (the second loop) and picking the best one. For each potential
owner, o, it computes the cost (i.e., number of messages) if that
node were the owner of v. (The current version of Scoop computes
the cost in terms of number of messages, but the algorithm could
easily include power consumption, storage capacity on nodes, the
expected reply volume, or even the cost associated with disseminating
the storage assignment itself in the cost metric.) The cost is twofold:
sending v from all sensors that produce it to o (innermost loop) plus

querying o from the basestation. The former is the product of the
probability that each node p produces value v, the rate at which it
does this, and the expected cost of sending data from p to o. Similarly,
the cost to query node o is the product of the probability that a user
issues a query about value v, the query rate, and the expected number
of transmissions to send the query from the basestation to o and back.
The best owner for a value v is the one that minimizes this cost.

This algorithm satisfies the aforementioned properties. P1: if the
data rate of p goes up, cost(o) goes up for all o’s far away from p;
hence, a node closer to p (or p itself) will be better. P2: if the
query rate goes up, cost(o) goes up for all o’s further away from
the basestation; hence a node closer to the basestation will be better.
P3: the more likely it is that a certain node p produces v, the more
attractive it is to pick p (or a node closer to p) as owner for v
because of the lower transmission cost. P4: the expected number
of transmissions, i.e., xmits(x → y), takes network connectivity into
account; the basestation uses statistics it collects from the nodes as
discussed in Section IV-B.

The time-complexity of this algorithm is O(V n2), where n is the
number of nodes and V is the number of values in the domain of the
attribute. In our experiments that used real sensor traces, V was at
most 150 (but usually much smaller) and n was 62. For the size of
sensor networks we are aiming for (order 100), this is still practical.

Notice that this algorithm may generate a “send-to-base” policy (if
all values get mapped to the basestation), but never a “store-local”
policy (since the current version never maps overlapping ranges to
more than one node). The basestation, therefore, also evaluates the
expected cost of a “store-local” storage assignment and uses it if the
expected cost is lower than the cost of the best storage assignment.

A possible extension of this algorithm is to pick multiple owners,
i.e., an owner set, per value, thus allowing nodes to pick one nearby
node from multiple owner candidates to store their data. Having
multiple owners per value may significantly reduce communication
overhead if multiple regions in the network exhibit similar data
distributions by assigning an owner per region. However, it may
increase the size of a storage assignment and the cost for querying
that value. Naively considering all possible owner sets makes the
algorithm’s time-complexity exponential in n. Hence, a more feasible
approach is to consider only small owner sets.

IV. SCOOP DESIGN

In addition to answering user queries, a Scoop sensor network
periodically collects statistics, shipping them to the basestation over
a routing tree. The basestation periodically creates a new storage
assignment and disseminates it throughout the network. Nodes then
route sensor data between each other using this assignment. In this
section we discuss the design of these parts of Scoop.

A. Routing tree

Nodes collectively build and maintain a routing tree of the sort
commonly used in sensor networks. This allows Scoop to route
packets to the basestation. The routing tree spans the network and is
formed by having each node select exactly one parent that is one-hop
closer to the basestation than itself.

A node maintains a “descendants list” of all its children, children’s
children, and so on, by tracking all nodes on whose behalf it routes
packets up the routing tree. This list contains at most n entries (32,
in our experiments) and is used for routing data (Section IV-D) and
routing queries (Section IV-E). Finally, each node keeps track of the
nodes in its direct network neighborhood, independent of the routing
tree. This list, too, has a maximum size (32, in our experiments) and



is used to optimize routing. A node evicts other nodes from its lists
after not hearing from them for a long time, thus adapting to changes
in network connectivity. If a node has more than n descendants, the
routing algorithm will still work, though with somewhat degraded
performance (see Section IV-D.)

B. Statistics Collection

The basestation relies on various statistics to run the storage
assignment algorithm. Specifically, the basestation needs know about
data that sensors have sampled and what their surrounding network
topology looks like. To achieve this, sensors periodically transmit
statistics in so called summary messages up the routing tree to
the basestation. A summary message contains a coarse histogram
over recent data, some network topology information, as well as the
lowest, highest, and sum of all values over recent data, as well as the
ID of the last complete storage assignment it has received from the
basestation (see Section IV-C).

Sending summary messages at a higher rate provides the basesta-
tion with more accurate data but incurs a higher cost. Conversely,
lowering the summary message rate reduces the overhead, at the
expense of inaccurate data at the basestation and, hence, a lower-
quality storage assignment. This frequency is currently a tunable
parameter, but a possible improvement is to dynamically adjust it.

The basestation always saves the last histogram it receives from
each node, thus allowing it to reason about a node even if newer
summary messages are lost. In our experiments about 40% of sum-
mary messages do not reach the basestation, mostly due to network
congestion near the basestation. Consequently, the basestation may
have old statistics for some nodes, but, in practice, this does not
significantly impair the overall performance of a storage assignment.

Summary histogram: The histogram part of the summary mes-
sage captures the distribution of sensor readings on that node over
its recent history. It consists of nBins fixed-width bins (in our
implementation, nBins is 10). The value in bin n is the number
of readings between min + n((max − min + 1)/nBins) and
min + (n + 1)((max −min + 1)/nBins), where min and max
are the smallest and largest values the attribute has taken on at s
during recent history. For example, if min = 1, max = 100, and
nBins = 10 and a node produced 8 readings between 50 and 60,
the value of the 6th bin (n = 5) in the histogram would be 8.

A node needs its own recent readings to build this histogram and,
therefore, writes its own readings in round-robin fashion to a fixed-
size recent-readings buffer (size 30, in our experiments). This ensures
that summary messages always contain histograms over the node’s
most recent data.

For the basestation to compute P (p → v), i.e., the probability
that, in the future, a certain node, p, will produce a certain value v,
p’s histogram is constructed as follows (assuming that the probability
that a sensor takes on any value in a bin is uniformly distributed):

P (p → v) {
binWidth = (max−min + 1)/nBins
bin = (v −min)/binWidth
P (v|bin) = 1/binWidth
P (bin) = height(bin)/(

P
b∈Bins height(b))

return P (v|bin) · P (bin)
}

Summary topology info: The topology part of the summary
message contains a list of the node’s n best connected neighbors
(12, in our experiments), sorted by link-quality. A neighbor may or
may not be a parent or child in the routing tree. (A node establishes
link-quality from its neighbors by snooping the network and, per

neighbor, counting the number of packets it did not receive using a
monotonically increasing number that all nodes put in the header of
all their outgoing packets.)

In addition to learning about nodes’ neighbors this way, the
basestation also learns about parent/child relationships in the routing
tree through Scoop’s custom packet header: each packet specifies the
packet’s origin and the origin’s parent. Network neighborhood infor-
mation from summary packets and the routing tree information from
Scoop’s custom packet headers allows the basestation to estimate
the expected number of transmissions (xmits(x → y) in Figure 2)
between any two nodes.

C. Mapping messages

After generating a storage assignment (see Section III), the base-
station splits it into different mapping messages since it is unlikely to
fit in a single network packet. Scoop uses Trickle [12] to disseminate
these storage assignment “chunks” to all nodes. Trickle uses a gossip-
based probabilistic flooding protocol to reliably disseminate data
throughout a sensor network. To reduce communication overhead,
the storage assignment is compacted by coalescing consecutive values
that map to the same node into a single value range to node mapping.

Each mapping message contains a monotonically increasing ID
to identify the storage assignment that the mapping message is
part of and the total number of entries in the storage assignment
so that receiving nodes know when they have received the entire
storage assignment. The remaining space in the packet is filled with
(valuefrom−valueto, nodeID) tuples, i.e, the storage assignment
“chunk”. When a node has received all mapping messages for one
storage assignment, it starts using that storage assignment, discarding
the older assignment. Nodes do not synchronize this transition with
other nodes.

Unfortunately, mapping packets may get lost, leaving nodes with
incomplete storage assignments. In that case, nodes continue to use
the older complete storage assignment they have. This allows the
basestation to avoid communication overhead by suppressing the
dissemination of a new storage assignment altogether if it is very
similar to the previous storage assignment; nodes will simply continue
to use an older storage assignment. It also allows the basestation more
easily determine which nodes to query at query time—something that
would be unduly complicated if nodes were to use half-assembled
storage assignments (see Section IV-E). If a node has never received
a complete storage assignment, it stores all its data locally. The next
section discusses how to route data between nodes who may be using
different storage assignments.

D. Routing sensor data

When a node produces a data item, it looks up the value’s owner
in its local copy of the storage assignment and sends (if the node
itself is not the value’s owner) a data message to the owner telling it
to store the data. This section explains how data messages are routed
without requiring nodes to keep full routing state (which is possibly
large and difficult to keep up-to-date).

The goal of Scoop’s routing algorithm is to route a certain value, v,
to its owner, o, as dictated by the latest storage assignment, even if
the node that produced v does not have the latest storage assignment.
To achieve this, a data message contains three fields: the data item
itself (v), an owner node (o), and a storage assignment ID (sid),
all three of which are initialized by v’s producer, i.e., the node that
initiates routing. However, o and sid may be overwritten by nodes
with a newer storage assignment, i.e., a storage assignment with a



higher ID than sid. On receiving or producing a data item, a node n
applies the following routing rules (in order):

1. If n’s storage assignment is newer than sid, look up v in n’s
storage assignment and update o and sid in the packet header.

2. If o == n, store data locally on n: write data to the circular
data buffer.

3. If o is in n’s neighbor list, send the packet directly to that
neighbor, irrespective of the routing tree.

4. If n is the base station, store it locally, i.e., don’t route packets
down the tree again.

5. If o is a node in n’s descendants list, send the packet down the
appropriate child branch.

6. Otherwise, send data item to n’s parent.

Step 1 allows nodes with storage assignment newer than sid to
modify the destination of the packet. Step 2 states that the packet
has reached its destination. (Notice that the data buffer is separate
from the recent readings buffer mentioned in Section IV-B.) Step 3 is
an optimization that uses the neighbor list to take shortcuts through
the routing tree. Step 4 is an optimization that prevents packets
from being routed needlessly once they have reached the basestation.
Step 5 sends the packet towards one of the node’s descendants, if
the destination is in the descendants list. In step 6, a node sends
the packet to its parent—this step may be invoked repeatedly until a
packet reaches the basestation.

Step 5 relies on a node’s descendants list, which, as mentioned
in Section IV-D, has a limited size. If a packet is destined for a
node that is n’s child, but n does not have this destination in its
descendants list, the packet will either end up going to the basestation
through (multiple) invocation(s) of step 6 or will be routed through
an alternate path, by virtue of steps 3 and 5. In our experiments—a
62-node network with descendants list of size 32—we are not aware
of running into this situation.

As an optimization, Scoop reduces the number of data packets by
batching up to n sensor readings destined for the same node together
into one packet (by default we use n = 5). As soon as a node
produces data for another node or the number of batched readings
exceeds n, the message is sent.

E. Queries

A user issues queries from the basestation. A query consists of
a select list of attributes (e.g. light, temperature), a time range
specifying a minimum and maximum timestamp of interest, and a
set of value ranges specifying the minimum and maximum ranges
of interest for each of the attributes. (Note that there is a limit to
the amount of historical data a node can store in RAM: currently,
the data buffer stores under 100 data items, but this can be easily
expanded by using Flash memory, rather than the relatively small
RAM on motes.)

The basestation determines the set of nodes to be contacted for
this query by consulting the storage assignment(s) for the specified
attribute(s) and time-range(s). (Unlike nodes, the basestation never
discards old storage assignments.) The value ranges in the query are
used to find the appropriate entries in the storage assignment, yielding
the IDs of one or more nodes to be queried. (Since nodes may be
using different storage assignments (see Section IV-C), values may
end up being stored at different network locations, rather than just
one. For that reason, the basestation uses the storage assignment ID
specified in its collection of summary messages (see Section IV-B)
to establish the overlapping set of all possible nodes that could be
storing queried values.) Alternatively, a user can query values from

one or more specific nodes, in which case the query just specifies a
time range and the list of nodes to be queried.

Once it established which nodes it has to contact, the basestation
encodes the query in a query packet and specifies which nodes it
wants an answer from using a bitmap in the packet’s header. (This
puts an upper bound to the size of the sensor network; 64 nodes in
our current implementation.)

Scoop uses a modified version of Trickle [12] to disseminate
query packets: our version uses both the packet’s bitmap and a
node’s neighbor and descendants list to selectively re-broadcast query
packets. If a node’s ID corresponds to a 1 bit in the bitmap, the node
linearly scans its data buffer for matching tuples. (Given the current
limited size of the buffer, a linear scan poses no significant overhead.
An index may be necessary if the size of the buffer increases.) The
node then sends a reply—even if no tuples matched the query—
through the routing tree back to the basestation. In practice, it takes
several seconds for the first replies to come back to the basestation. In
the worst case, all nodes are involved in answering a query (if the user
queries the entire attribute’s domain), but in all other cases a (much)
smaller subset of nodes is queried, because of Scoop’s assignment of
value ranges to single nodes.

In our experiments, up to 80% of query packets reach the relevant
nodes, but replies frequently get lost (only 30%-40% of replies reach
the basestation), most likely due to congestion near the basestation.
(We note that these loss rates are consistent with loss rates observed in
other sensor network applications [20], [16].) A future improvement
could be for the basestation to re-issue queries, specifying in the
bitmap only those nodes from which it has not yet received a reply.

As an optimization, the basestation may use data from its summary
messages to answer queries, which requires no network traffic at all.
For example, since summary message contain the maximum attribute
value measured per time period, queries that ask for the maximum
value can be easily satisfied. To answer historical queries in similar
fashion, the basestation never discards any summary message.

For each query it issues, the basestation updates its statistics
that keep track of the query rate, and which attributes and what
value ranges get queried. These numbers are used to estimate P(user
queries v) and the query rate used in the algorithm from Figure 2.

F. Network failures

Scoop deals with network failures through a range of techniques.
First, we use a limited number of link-level retransmissions for data,
summary, query, and reply messages. Scoop uses Trickle [12] to
ensure that all nodes receive the mapping and query messages. Also,
nodes insert a random delay before sending mapping, summary, and
reply messages to avoid congestion near the top of the routing tree.
In addition, nodes will suppress sending a summary message if the
difference with the last summary message is insignificant. Similarly,
the basestation may suppress dissemination of a storage assignment if
it the difference with the previous storage assignment is insignificant.
Also, a node batches multiple data items into a single data message.
Finally, the basestation uses old statistics when summary messages
from a node are lost.

V. EXPERIMENTS

We implemented Scoop in TinyOS [8] and ran it in simulation
(using the TOSSIM packet-level network simulator [18]) and on a
62-node indoor testbed consisting of Mica2 and Cricket [3] motes.
Because the Scoop basestation requires more memory and CPU
power than current mote hardware can provide, we ran the basestation
on a PC connected to a mote using EmTOS [7].



As shown below, results obtained from simulation experiments
and experiments on the real testbed are similar (modulo topology
differences), which we take to indicate that the experiments run solely
in simulation are a good predictor of real-world performance.

As we argued before, energy consumption is dominated by com-
munication overhead. Therefore, our cost metric is the total number of
messages the nodes collectively send. The goal of our experiments is
to compare Scoop against other storage policies using this cost metric
under different loads. The systems involved in our experiments are:

name description implemented
SCOOP hybrid storage policy yes
LOCAL store locally, broadcast queries yes
BASE send all data to basestation yes
HASH static hash to route data no, analytically

SCOOP is an implementation of the system we describe in this
paper, with one important change: the optimization described in
Section III where Scoop can default to “store-local” (aka LOCAL)
has been disabled. In LOCAL, nodes store all data locally and queries
are flooded to all nodes in the network. In BASE, all nodes send
their data up the routing tree to the basestation and queries have
no associated cost. Assuming nodes are uniformly distributed, we
expect, on average, each data item to be sent roughly halfway across
the network. In HASH, a uniform hash function maps each value
to a node in the network. We expect the storage costs of HASH
to be comparable to the storage costs of BASE. Since, on average,
each packet has to be sent roughly halfway across the network.
However, HASH will incur additional costs for querying. Because
routing to a random node from any node in the network requires
a non-tree based routing algorithm—typically based on geographic
routing (such as GPSR [11])—we can only measure the cost of HASH
analytically, since we could not find a reliable implementation of
such an algorithm and nodes in our network do not have access to
geographic information.

name description sim/testbed
REAL trace of real light data sim only
UNIQUE produce value equal to node ID both
EQUAL all nodes produce same value both
RANDOM random values both
GAUSSIAN values distributed around mean both

Since Scoop is sensitive to the actual data distribution, we generate
sensor data according to different methods, enumerated in the table
above. For REAL, we use a trace of light data collected from a
50-node indoor sensor network deployment [1]. Each time a node
in our experiments needs to produce a value, it reads the next
number from this trace and produces that. Because these sensors
were deployed in the same building, their light readings are highly
correlated. However, since TinyOS has no file system support, we
could only use the REAL data trace in simulation. For RANDOM,
nodes produce random numbers in the range [0,100]. For EQUAL,
all sensors in the network produce the same value for the duration of
the experiment. For GAUSSIAN, each sensor i randomly selects a
mean value µi from the range [0,100], which it uses for the duration
of the experiment. It generates readings by sampling from a uni-
dimensional Gaussian with mean µ and variance of 10. This is meant
to approximate the behavior of a number of independent sensors
generating data. For UNIQUE, each sensor produces its own, unique
node ID as its value for the duration of the experiment.

The parameters we used in our experiment are listed below. All

experiments use these default parameters, unless specified otherwise.
All results we present are averages over three trials.

parameter value remark
attributes 1
sample rate 1 in 15 seconds
query rate 1 in 15 seconds
summary rate 1 in 110 seconds Scoop only
remap rate 1 in 240 seconds Scoop only
size 62 nodes + 1 base
duration 40 minutes
data source REAL

By default, nodes sample their sensor (we measure only one
attribute) once every 15 seconds. The basestation issues a query
once every 15 seconds over 1-5% of the attribute’s value domain
(the query width). Nodes send a summary packet every 110 seconds
and the basestation creates a new storage assignment (“remap rate”)
every 240 seconds which were values that worked well across a range
of experiments. We experimentally vary the query width and data
production rates in the experiments below.

The 62-node testbed is spread out across one floor of a large office
building. The simulated topology also consisted of 62 nodes that,
on average, can communicate with about half of the nodes in the
network, and of the pairs that can hear each other loss rates vary from
twenty-five percent to about ninety percent. Connections are slightly
asymmetric, as in most real wireless networks. All experiments ran
for 40 (simulated) minutes. The first 10 minutes are spent stabilizing
the network: nodes send heartbeat messages to form the routing tree.
After the initialization period, nodes start sampling their sensor. Prior
receiving their first storage assignment, nodes default to LOCAL
storage.

Figure 3 (left) shows, per storage method, the breakdown of cost
into data, summary, mapping, and query/reply messages on our mote
testbed. Scoop running with UNIQUE performs very well on our
testbed—each node produces its own, unique sensor reading, which
allows Scoop to generate an optimal storage assignment. On the
GAUSSIAN data source, Scoop outperforms LOCAL and BASE. In
the BASE case, the only packets are data packets (from sensors to
the basestation). In the LOCAL case, the only packets are query
packets flooded to all nodes from the basestation and the resulting
reply packets. SCOOP, with GAUSSIAN, adds some overhead for
summary and mapping messages but, in doing so, finds an efficient
storage assignment that vastly reduces the number of data, query, and
reply packets. Note that we do not show HASH here because we can
only evaluate it using an analytical model in our simulator.

Similarly, Figure 3 (middle) shows simulation results for different
storage policies over the REAL data trace (in simulation). These re-
sults are similar to Figure 3 (left): Scoop adds overhead for summary
and mapping packets for the storage assignment, but reduces overhead
of other packet types. Note that HASH is included here, and, as
expected, performs about as well as BASE since the query and data
production rate are approximately the same.

Figure 3 (right) shows Scoop’s performance over different data
sources in our simulation. Scoop performs very well over UNIQUE
since it exploits data locality. In RANDOM, however, there is no data
locality at all for Scoop to exploit. In EQUAL all nodes produce the
exact same value; it incurs very few mapping messages because the
basestation suppresses new mappings that do not change over time.
EQUAL outperforms RANDOM even though every value has to be
transmitted to a random node in both cases. EQUAL allows nodes to
batch equal values (up to 5 in our experiments) before sending a data



storage method/data source

scoop/unique
scoop/gaussian

local/gaussian
base/gaussian

no
. o

f m
es

sa
ge

s 
(x

10
00

)

0

5

10

15

20

storage method

scoop local hash base

no
. o

f m
es

sa
ge

s 
(x

10
00

)

0

5

10

15

20

data source

unique equal real
gaussian

random

no
. o

f m
es

sa
ge

s 
(x

10
00

)

0

5

10

15

query/reply messages

mapping messages

summary messages

data messages

Fig. 3. Left: Scoop compared to BASE and LOCAL on the testbed. Middle: Simulation results of Scoop compared to LOCAL, HASH, and BASE over
the REAL data trace. Right: Simulation results of Scoop over different data sources.

query interval (s)
0 10 20 30 40 50

no
. o

f m
es

sa
ge

s 
(x

10
00

)

0

25

50

75

100

125

150

SCOOP
LOCAL
BASE

Fig. 4. Total cost for different storage methods as a function of the interval
between queries.

sample interval (s)
0 10 20 30 40 50

no
. o

f m
es

sa
ge

s 
(x

10
00

)

5

25

45

UNIQUE
GAUSSIAN
EQUAL
RANDOM
REAL

Fig. 5. Scoop cost as a function of sample interval for different data sources.

packet as described in IV-D. The “unique” and “gaussian” columns,
when compared to the “scoop/unique” and “scoop/gaussian” columns
in Figure 3 (left), show that the relative performance of the simulation
and real network are about the same, although the overall breakdown
of messages is somewhat different due to variations in the topology
used in the two cases.

Figure 4 shows the total cost for different storage methods as the
query rate goes down, i.e., query interval goes up. Since the query
cost is very small in SCOOP and zero in BASE, only LOCAL is
substantially affected by this; as the query rate drops, it becomes a
more attractive option relative to the others.

Figure 5 shows the cost of Scoop running on different data sources
as the sample interval increases (i.e., the rate at which data is
stored decreases). As less data is stored, the differences between
the behavior of Scoop on the different types of data becomes less
pronounced; the cost of queries, mappings, and summaries becomes
dominant.

We measured Scoop’s performance as a function of the number of
nodes involved in replying to a query. (Recall that LOCAL contacts
all nodes and BASE contacts no nodes to answer a query.) Scoop’s
query/reply overhead increases as more nodes are contacted, but
continues to dominate LOCAL and BASE for queries that contact
fewer than 70% of the nodes.

We also measured the loss rates of Scoop on the testbed. Data
messages are successfully stored about 93% of the time, and about
39% of query results are successfully retrieved on average. This
relatively low query success rate is due to the fact that we do not
currently have any retries on query or replies.

We also ran several experiments on different sized topologies (up
to 100 nodes) in simulation, though we omit a detailed study of those
results due to space constraints. We found that the system scaled well
up to 100 nodes with little overall effect on loss rate. We observed
that Scoop over a RANDOM distribution is more sensitive to larger
networks as data is sent further across the network; Scoop over other
distributions is less sensitive to network size.

We believe these real-world results demonstrate the practicality
of Scoop —it runs on a large mote testbed, providing good overall
performance using standard TinyOS networking protocols.

VI. EXTENSIONS AND FUTURE WORK

The basic Scoop architecture makes it easy to support a number
of extensions; each of these requires very few changes to the code,
mostly to the storage assignment construction algorithm. Multiple
owners per value: As mentioned in Section III, computing an owner
set rather than a single owner per value could improve Scoop’s
performance when multiple regions in the network exhibit similar
data distributions. Range query optimizations: optimizing the place-
ment of sensor values that have a high probability of being queried
together could improve the performance of range queries. Multi-
dimensional queries: Currently, Scoop’s storage assignment is for
a single attribute; supporting multi-dimensional storage assignments
could improve the performance of some queries. One approach would
be to partition data according to multiple attributes and assign cubes
in this multidimensional space to different nodes (e.g., node 1 would
be owner for temperatures in the range 10–12 where light is in the
range 100–120).

VII. RELATED WORK

In-network Storage in WSNs: Ratnasamy et al. [19] compare
the performance of a hashing-based approach called “data centric
storage” with the performance of a local storage approach and a
“ship-to-root” approach similar to our local storage and base storage
methods described in Section III. They show that hashing performs
better in sensor networks that (a) are large and (b) collect data at high



rates, but with an overall lower query rate. The overall performance of
their approach is similar to that of the hashing scheme we compare
against: it works well when the query rate is high relative to the
data rate, but as the data rate gets high, the cost of routing data to a
random location dominates the overall cost. Scoop improves on GHT
in two ways: (1) it eliminates the need for geographic routing which
is difficult to implement and requires nodes to be location-aware,
and (2) instead of hashing, Scoop strives to minimize the combined
cost of querying and storing data based on current query rates and
the values sensors have recently produced. As we illustrated, Scoop
strictly dominates the performance of hashing-based schemes.

There has been other work in the WSN community on in-network
storage. Ganesan et al. [6], [22] investigated wavelet-based schemes
for summarizing data inside a sensor network; they envision nodes
storing data locally and transmitting summaries of it out of the
network. Their wavelet based techniques are complimentary to ours:
wavelets could be a useful mechanism for building summary mes-
sages and approximation techniques are an interesting future direction
for us to explore. Desnoyers et al. [4] built a two-tier system for data
collection and storage in sensor networks. Our focus in this paper was
on storage issues in a medium-sized homogeneous network; if we
wished to scale to much larger networks, such two-tiered techniques
would become important for us as well.

Liu et al. [14] propose a system that investigates the trade-offs
between push and pull in query systems; these two opposites are
analogous to our BASE and LOCAL schemes; as we show, the Scoop
approach outperforms either of these approaches.

Li et al. [13] propose a hash-based approach called DIM that strives
to hash nearby sensor readings to the same node. This approach
is well suited to range queries in sensor networks. Although the
DIM approach is good for range queries, it suffers from the same
limitations as GHT: it requires geographic routing and has a high
data-storage cost because readings are sent far across the network.

Trigoni et al. [21] present a system that uses statistics about query
frequency and data production rates to optimize network bandwidth in
a multi-query environment. Their idea is to “push” data some distance
up the network, towards then sink, and then “pull” the data the rest
of the way when queries arrive. They tune the distance that data is
pushed in the initial phase based on expected rates of querying and
data production. Unlike our approach, they do not take into account
the values that sensor produce or that queries ask for in determining
how far to push data or where to store it.

There has been much work on building summaries and histograms
in the database community that could be adapted to Scoop. Mannino
et al. [17] summarize much of the early work in this area; our
statistics are currently based on equal-bin-width histograms, and
could benefit from more sophisticated summarization techniques.

VIII. CONCLUSION

By collecting statistics about network conditions and data and
query rates in a store-and-query sensor network, Scoop periodically
creates a storage policy that optimizes where sensors should store
their data such to minimize overall communication. Scoop is a hybrid
between several existing in-network storage approaches, sometimes
acting like a purely local store when query rates are low and
sometimes degenerating to the case where all data simply routed
to the root of the network when query rates are very high. For
this reason, Scoop almost always performs as well as, and usually
much better, than existing approaches. Furthermore, our networking
protocols are robust to a range of failures that are common in
sensor networks, and we do not rely on complete network topology

information or geographic routing protocols. Our results demonstrate
that Scoop runs quite well on current generation medium-scale mote-
based networks on the order of 100 nodes. For these reasons, Scoop is
a core piece of our work on sensor network querying that we view as
essential technology for future WSN-based monitoring deployments.

REFERENCES

[1] Intel lab data. Web Page.
http://db.lcs.mit.edu/labdata/labdata.html.

[2] R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, L. Krishnamurthy,
N. Kushalnagar, L. Nachman, and M. Yarvis. Design and deployment
of industrial sensor networks: Experiences from the north sea and a
semiconductor plant. In Proceedings of SenSys, 2005.

[3] I. Crossbow. Wireless sensor networks (mica motes). http://www.
xbow.com/Products/Wireless Sensor Networks.htm.

[4] P. Desnoyers, D. Ganesan, and P. Shenoy. Tsar: A two tier sensor
storage architecture using interval skip graphs. In Proceedings of
SenSys, 2005.

[5] A. Desphande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[6] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do we
need a new data handling architecture for sensor networks? In
Proceedings of the First Workshop on Hot Topics In Networks
(HotNets-I), Princeton, New Jersey, 2002.

[7] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer. A system for simulation,
emulation, and deployment heterogeneous sensor networks. In
Proceedings of SenSys, 2004.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Architectural Support for Programming Languages and Operating
Systems, pages 93–104, 2000.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System
architecture directions for networked sensors. In ASPLOS, November
2000.

[10] A. Jain, E. Change, and Y.-F. Wang. Adaptive stream resource
management using kalman filters. In Proceedings of SIGMOD, 2004.

[11] B. Karp and H. Kung. Greedy perimeter stateless routing for wireless
networks. In Proceedings of the Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom 2000),
pages 243–254, Boston, MA, 2000.

[12] P. Levis, N. Patel, D. Culler, and S. Shekner. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks. In Proceedings of NSDI, 2004.

[13] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range
queries in sensor networks. In Proceeding of the First ACM
Conference on Sensor Systems (SenSys), 2003.

[14] X. Liu, Q. Huang, and Y. Zhanh. Combs, needles, haystacks:
Balancing push and pull for discovery in large-scale sensor networks.
In Proceedings of SenSys, 2004.

[15] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web
page. http://telegraph.cs.berkeley.edu/tinydb.

[16] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless
sensor networks for habitat monitoring. In ACM Workshop on Sensor
Networks and Applications, 2002.

[17] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in
database systems. ACM Computing Surveys, 20(3):191–221, 1988.

[18] T. A. Philip. Tossim: Accurate and scalable simulation of entire tinyos
applications.

[19] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: A Geographic Hash Table for Data-Centric Storage
in SensorNets, 2002.

[20] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, S. Burgess,
D. Gay, P. Buonadonna, W. Hong, T. Dawson, and D. Culler. A
macroscope in the redwoods. In Proceedings of SenSys, 2005.

[21] A. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Hybrid
push-pull query processing for sensor networks. In Proceedings of the
GI Workshop on Sensor Networks, 2004.

[22] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. B. R. Govindan,
and D. Estrin. A wireless sensor network for structural monitoring. In
Processings of SenSys, 2004.

[23] Y. Yao and J. Gehrke. Query processing in sensor networks. In
Conference on Innovative Data Systems Research (CIDR), 2003.


