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Abstract

A denial-of-service bandwidth attack is an attempt to
disrupt an online service by generating a traffic over-
load that clogs links or causes routers near the victim to
crash. We propose a heuristic and a data-structure that
network devices (such as routers) can use to detect (and
eliminate) such attacks. With our method, each network
device maintains a data-structure,MULTOPS, that mon-
itors certain traffic characteristics. MULTOPS (MUlti-
Level Tree for Online Packet Statistics) is a tree of nodes
that contains packet rate statistics for subnet prefixes at
different aggregation levels. The tree expands and con-
tracts within a fixed memory budget.

A network device using MULTOPS detects ongoing
bandwidth attacks by the significant, disproportional dif-
ference between packet rates going to and coming from
the victim or the attacker. MULTOPS-equipped routing
software running on an off-the-shelf 700 Mhz Pentium
III PC can process up to 340,000 packets per second.

1 Introduction

A bandwidth attack is an attempt to disrupt an online
service by generating a traffic overload that clogs links
or causes routers near the victim to crash. This can have
serious consequences for Web companies which rely on
their online availability to do business. This paper intro-
duces a data-structure that routers and network monitors
can use to collect packet rate statistics for subnet prefixes
at different aggregation levels. These statistics can be
used to detect bandwidth attacks using a simple heuris-
tic: a significant, disproportional difference between the
packet rate going to and coming from a host or subnet.
This heuristic is based on the assumption that, during
normal operations on the Internet, the packet rate of traf-
fic going in one direction is proportional to the packet

rate of traffic going in the opposite direction. Although
this assumption does not hold in some cases, it is a close
approximation to reality.

Bandwidth attacks are typically distributed attacks. An
attacker uses tools to gain root access to machines on
the Internet [Pac00, Spi00]. Once a machine is cracked,
it is turned into a “zombie.” The attacker instructs the
zombies to send bogus data to one particular destina-
tion [Dit00]. The resulting traffic can clog links, cause
routers near the victim or the victim itself to fail under
the load.

One major reason underlies the absence of a simple so-
lution against bandwidth attacks: attackers can release
high volumes of normal-looking packets on the Internet
without being conspicuous or easily traceable. It is the
mass of all packets together directed at one victim that
poses a threat, rather than any characteristics of the in-
dividual packets. A dropping policy in routers based on
per-packet characteristics will, therefore, not work.

It is relatively easy, but rather useless, to detect a band-
width attack in the vicinity of the victim: by measuring
the traffic load on a link or in a router, the exceptionally
high volume of packets can be detected. Unfortunately
for the victim, determining that it is under attack will not
make the packets go away. Harm has already been done
by the time the malicious packets reach (the vicinity of)
the victim. A bandwidth attack should, therefore, be de-
tected close to the attacker rather than close to the victim
so that malicious packets can be stopped before they can
cause any harm.

This paper proposes aMUlti-Level Tree for On-
line Packet Statistics (MULTOPS). MULTOPS enables
routers or network monitors to detect ongoing band-
width attacks. A handful of attackers that blast pack-
ets to a victim without any (or disproportionally fewer)
packets coming back will be identified as malicious
by MULTOPS. Large attacks that occurred in Febru-



ary 2000 [CNN00a, CNN00b, Net00] displayed these
disproportional packet flows. Routers (or network mon-
itors) using MULTOPS could have been used to stop (or
detect) those attacks.

MULTOPS is a tree of nodes that contains packet rate
statistics for subnet prefixes at different aggregation lev-
els. It dynamically adapts its shape to (1) reflect changes
in packet rates, and (2) avoid (maliciously intended)
memory exhaustion.

Depending on their setup and depending on their lo-
cation on the network, MULTOPS-equipped routers or
network monitors may fail to detect a bandwidth at-
tack that is mounted by attackers that randomize IP
source addresses on malicious packets. In a different
setup, MULTOPS-equipped routers may cause “collat-
eral damage” by dropping legitimate packets with an IP
destination address that MULTOPS identified as being
under attack.

MULTOPS fails to detect attacks that deploy a large
number of proportional flows to cripple a victim. (Pro-
portional flows are flows in which the packet rate in one
direction is proportional to the packet rate in the opposite
direction.) For example, many attackers could open FTP
or HTTP connections to one victim and download—
preferably large—files over these connections, thereby
overloading the victim. Even though the packet rates
between the attackers and the victim are relatively low
(because the victim cannot handle all the parallel down-
loads), they are proportional and, therefore, undetectable
by MULTOPS. However, to successfully mount such an
undetectable bandwidth attack, attackers need to be nu-
merous, geographically distributed, and well organized.
This makes it more difficult to mount an undetectable
attack.

MULTOPS has been implemented in a software router
and was tested with simulated attacks. Results are en-
couraging: attacks are stopped and legitimate traffic con-
tinues in a normal fashion, even with a large number of
participating attackers. An off-the-shelf 700 Mhz Pen-
tium III PC, running MULTOPS-equipped routing soft-
ware, routes between 240,000 to 340,000 packets per
second, depending primarily on the resources available
to MULTOPS.

The rest of this paper is organized as follows. Section2
takes a look at related work, Section3 looks at different
types of bandwidth attacks, Section4 explains the de-
sign of MULTOPS, Section5 looks at the details of the
MULTOPS implementation, Section6 deals with mea-
surements, Section7 discusses the details of some (un-
resolved) issues, and Section8 concludes this paper.

2 Related work

Most of the techniques proposed so far for protection
against denial-of-service attacks can be used in conjunc-
tion with MULTOPS. We quickly review the major tech-
niques and how MULTOPS can augment them.

Ingress/egress filtering is a technique performed by
routers to effectively eliminate IP spoofing [ea00,
Ins00]—lying about one’s own IP address in the header
of outgoing IP packets. To stop spoofed IP packets,
edge routers match the IP source address of each outgo-
ing packet against a fixed set of known IP address pre-
fixes. If no match is found, the packet is dropped. An-
other possible technique is for a router to only send off a
packet from interfacei if a potential reply to this packet
is, according to the router’s routing tables, expected to
arrive on interfacei. If not, the packet is dropped. Even
though these techniques are simple and effective reme-
dies against IP spoofing, unfortunately many routers are
not configured to deploy these techniques and they are
not complete solutions. However, MULTOPS benefits
from them because IP spoofing hurts MULTOPS’ abil-
ity to detect attacks (see also Section7.1).

IP Traceback assists in tracking down attackers post-
mortem [SWKA00, SP01, DFS01]. This technique re-
quires routers to, with a low probability, mark packets
such that the receiving end can reconstruct the route that
packets followed, provided enough packets were sent.
A similar technique is ICMP Traceback [Bel00]. When
forwarding packets, routers can, with a low probability
(1/20,000), generate an ICMP Traceback message that
is sent along to the destination. With enough traceback
messages from enough routers along the path, the traffic
source and path can be determined. The main advantage
of these techniques is that it assists in finding attackers.
It does not stop them.

All the traceback approaches have serious deployment
and operational challenges. A sufficient number of
routers need to support traceback before it is effective.
Attackers can generate traceback messages too, so some
form of authentication of traceback messages is neces-
sary. The victim of a bandwidth attack might also not
receive enough traceback messages because they might
get dropped by overloaded routers. In addition, if an at-
tack is very distributed, there may not be enough trace-
back information to find the attackers.

A number of routers provide information about packets
that can be used to implement the same detection heuris-
tic that MULTOPS is using. Cisco routers, for exam-



ple, support RMON [Cisb] and Netflow [Cisa]. Unfor-
tunately, both RMON and Netflow data is expensive to
process off-line. RMON copies complete packets to a
port for off-line analysis—this slows down the router’s
normal operation. Netflow keeps a table with 45-byte
entries for every flow, which can be queried by and trans-
ferred to an external analysis program. Netflow provides
no protection against attackers that might blow up the ta-
ble. In the worst case, RMON and Netflow can magnify
an attack. MULTOPS is intended to be integrated into a
router or a monitoring device for on-line analysis. MUL-
TOPS also runs in a fixed-size memory footprint so that
attackers cannot run a MULTOPS device out of memory.

Stone [Sto99] proposes CenterTrack, an overlay network
that consists of IP tunnels which can be used to selec-
tively reroute packets from routers on a network to spe-
cial “tracking” routers. This architecture can be used to
analyze traffic for signs of a bandwidth attack, and op-
tionally drop traffic that seems suspicious. MULTOPS
could probably be used as a component of CenterTrack
to help routers determine whether a bandwidth attack is
occurring and what IP addresses are involved.

Bellovin [Bel01] discusses aggregate congestion con-
trol and pushback. The central idea is to identify
“aggregates”—subsets of traffic defined by some char-
acteristic, such as a particular destination address—that
may be involved in the bandwidth attack. Pushback is
a cooperative mechanism in which routers can ask ad-
jacent routers to block an aggregate upstream. MUL-
TOPS could be viewed as a data-structure for efficiently
tracking the aggregate defined by IP addresses for which
traffic flow is asymmetric.

Intrusion detection system such as Bro [Pax99] try to de-
tect attacks by monitoring network links over which the
attacker’s traffic transits. Armed with (statistical) knowl-
edge about normal behavior of different applications and
protocols, these systems detect anomalies in traffic pat-
terns and report a wide range of attack types. Although
similar to MULTOPS in that it monitors traffic, the pri-
mary difference is that these systems do not attempt to
stop attacks.

3 Bandwidth attacks

The common denominator of all bandwidth attacks is the
desire to cripple someone else’s infrastructure by gener-
ating a traffic overload. Bandwidth attacks vary, among
other things, in the protocol being used to mount the

attack. In addition, attackers can use IP spoofing. As
mentioned above, IP spoofing is lying about one’s own
IP address.

Since routing is done based on the IP destination address
only, the IP source address can be anything. In some
cases, attackers use one specific forged IP source ad-
dress on all outgoing IP packets to make all returning
IP packets—and possibly ICMP messages—go to the
unfortunate owner of that address. Attackers also use
IP spoofing to hide their location on the network. Sec-
tion 7.1 discusses how IP spoofing affects MULTOPS’
ability to detect (the source(s) of) attacks.

An attacker can forge an ICMP packet with a spoofed
IP source address and launch a “Smurf” attack [CC98]:
he sends thisoneforged ICMP packet to a broadcast ad-
dress andall the receivers respond with a reply to the
spoofed IP address (the victim). (A solution is to never
reply to ICMP packets that are sent on a broadcast ad-
dress, or to let routers filter such packets [ea81, ea00].)
In a “Fraggle” attack, an attacker instructs many zom-
bies to send UDP packets to one victim. Both Smurf
and Fraggle attacks can be detected by MULTOPS be-
cause in both cases the packet rate to the victim exceeds
the packet rate coming back from the victim in a dispro-
portional manner.

There are several types of attack that use TCP. The best
known is “SYN Flooding” [CC96]. Several solutions
have been proposed for solving SYN Floods: lowering
the TCP time-out, increasing the number of TCP con-
trol blocks, SYN cookies [AH99] that eliminate the need
to store information on half-open connections, and spe-
cial firewalls that buffer SYN packets. Although a SYN
Flood is actually a resource attack, it is similar to a band-
width attack because of the flood of SYN packets.

Another attack works by generating a huge amount of
normal traffic by, for example, running a JavaScript pro-
gram in a browser that pops up a few dozen windows
each fetching a Web page from one server. This may
constitute a problem if a few thousand people are willing
to run this script in their browser simultaneously [ec00].
Such a script could easily spread by means of self-
replicating e-mail viruses. (This phenomenon can also
occur without it being an attack.)

As mentioned in Section1, attacks that cripple a victim
by sending or receiving a high volume of traffic using
proportional flows may go unnoticed by MULTOPS.



4 MULTOPS design

4.1 Overview

MULTOPS uses disproportional packet rates to or from
hosts and subnets as a heuristic to detect (and potentially
stop) attacks. To collect these statistics, a tree-shaped
data-structure keeps track of packet rates to and from
those subsets of the IP address space that display dis-
proportional behavior. This is done by letting the tree
expand and contract (“zoom in and zoom out”) based on
observed (disproportional) traffic patterns.

MULTOPS stores packet rate statistics for flows be-
tween hosts (or subnets)A andB using eitherA’s IP
address orB’s IP address. As a consequence, MUL-
TOPS can either establish the victim, or the source(s)
of the attack. We distinguish between these two modes
by defining them asvictim-orientedmode andattacker-
orientedmode, respectively. In victim-oriented mode,
MULTOPS tries to identify the IP address of the vic-
tim of an attack. In attacker-oriented mode, MULTOPS
tries to identify the IP address(es) of the attacker(s). The
difference between these two modes becomes important
when dropping packets: either packets going to the vic-
tim are dropped, or packets coming from the attacker are
dropped. Note that in both cases the attack is stopped.
In one case this is done based on the IP address of the
victim, in the other case it is done based on the IP ad-
dress(es) of the attacker(s). Throughout this paper we
assume that MULTOPS runs in victim-oriented mode,
unless specified otherwise.

interface 1

inspect dest. address

inspect src. address interface 2

Figure 1: Schematic MULTOPS in victim-oriented
mode

MULTOPS expects two streams of IP packets as input—
each connected to a different network interface. Packets
going in one direction (“forward packets”) are inspected
on their destination address; packets going in the oppo-
site direction (“reverse packets”) are inspected on their
source address. Figure1 illustrates this. Exchanging the
network interfaces switches between attacker-oriented
and victim-oriented mode.

MULTOPS presents a query interface that returns an ap-

proximation toR(P ). R(P ) is the ratio of forward pack-
ets with destination IP address prefixP to reverse pack-
ets with source IP address prefixP .

In victim-oriented mode, MULTOPS determines a vic-
tim’s IP address by looking for prefixes for whichR(P )
is greater than some threshold. Dropping packets with
destination addresses matching such prefixes might de-
feat the attack, though it may also impose “collateral
damage” by dropping legitimate packets. In attacker-
oriented mode, MULTOPS determines the addresses of
attackers by looking for prefixes for whichR(P ) is less
than some threshold. Dropping packets based on source
addresses matching such prefixes might defeat the at-
tack, though IP spoofing introduces complications that
are discussed in Section7.1. Note that a single MUL-
TOPS cannot detect both attacker and victim addresses.

In our current design, we also assume that packets are
being sent using IPv4. Our approach should easily ex-
tend to IPv6, although it will consume significantly more
resources.

4.2 MULTOPS heuristic

Packets are defined to be malicious (and, thus, may be
dropped) if they are destined for a host or subnet from
which too few packets are coming back. This heuristic
is based on the assumptions that (1) most Internet traffic
consists of packet flows, and (2) during normal opera-
tions, the rate of packets in a flow going fromA toB is
proportional to the packet rate going fromB toA. Thus,
during normal operations on the Internet, the packet rate
of traffic going in one direction is proportional to the
packet rate of traffic going in the opposite direction. If
not, something must be wrong.

This heuristic appears to hold broadly. TCP, the pro-
tocol mainly used on the Internet, acknowledges every
single—or everyk—received packets by sending back a
packet, and, therefore, has proportional packet flows.

The following example illustrates the heuristic. If ma-
chineA is sending legitimate TCP packets to machine
B, butB is suffering under a bandwidth attack, thenA’s
packets will not reachB. Even if some ofA’s pack-
ets reachB, thenB’s packets may not reachA because
of the overloaded links and routers. In reaction to the
absence ofB’s packets,A will automatically decrease
the sending rate and, eventually, stop sending packets to
B altogether. If, on the other hand,A is an attacker that
blasts (any type of) packets atB, a MULTOPS-equipped



router routingA’s packets toB will detect the dispro-
portional packet rates between them and could decide to
drop packets going toB. Consequently,B will not have
to cope withA’s packets.

Let R(P ) be the ratio between the packet rate going to
and coming from addresses with prefixP . Under normal
circumstances,R is close to some constantk for all P ,
i.e., packet rates are proportional for all prefixes. IfR
drops belowRmin or exceedsRmax, then a (host in)
subnet with prefixP is either under attack or a subnet
with prefixP harbors an attacker.

MULTOPS collects packet rates to and from address pre-
fixes so that, given a certainP , R(P ) can be calculated.
Packets may be dropped if they are destined for a host or
subnet from which disproportionally fewer packets are
coming back, i.e., ifR(P ) is not betweenRmin and
Rmax. The sensitivity of MULTOPS can be tuned by
changing the values ofRmin andRmax.

4.3 Data structure

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

130.16.*.*16.128.*.*

Figure 2: MULTOPS

MULTOPS is organized as a 4-level 256-ary tree to con-
veniently cover the entire IPv4 address space. Each
node in the tree is a table consisting of 256 records,
each of which consists of 3 fields: 2 rates—to-rate and
from-rate—and 1 pointer potentially pointing to a node
in the next level of the tree. A table stores all packet
rates to and from IP addresses with a common 0-bit, 8-
bit, 16-bit, or 24-bit prefix, depending on the level of
the tree. Deeper levels of the tree contain packet rates
for addresses with a longer prefix. Thus, the root node
contains the aggregate packet rates to and from address
0.*.*.*, 1.*.*.*, 2.*.*.*, etc. The 90th record in the root
node, for example, contains the packet rates to and from
addresses with 8-bit prefix 89, and a pointer to a node
that keeps tracks of the aggregate packet rates to and

from addresses with that prefix, i.e., 89.0.*.*, 89.1.*.*,
89.2.*.*., etc. The sum of all 256 to-rates and the sum of
all 256 from-rates in a node are equal to the to-rate and
the from-rate in the parent record of that node. Figure2
shows a sample MULTOPS.

When the packet rate to or from a subnet reaches a cer-
tain threshold, a new subnode is created on the fly to
keep track of more fine-grained packet rates, potentially
down to per-IP address packet rates. For example, if
the aggregate packet rate to or from subnet 130.17.*.*
exceedsRmax, a new node is created to keep track of
packet rates to and from subnets 130.17.0.*, 130.17.1.*,
etc. Creating new nodes is calledexpansion. The re-
verse, i.e., removing nodes or entire subtrees, is called
contraction. Contraction is done when the packet rate
from and to a given IP address prefix drop below a cer-
tain threshold, or when memory is running out, possibly
due to a memory exhaustion attack against MULTOPS
itself.

Expansion and contraction enable MULTOPS to exploit
the hierarchical structure of the IP address space and the
fact that a bandwidth attack is usually directed at (or
coming from) a limited set of IP addresses—with a com-
mon prefix—only. MULTOPS detects the attack on a
high level in the tree (where prefixes are short) and ex-
pands toward the largest possible common prefix of the
victim’s IP address(es), potentially establishing single IP
address(es) that are under attack.

4.4 Algorithm

Each packet (or everynth packet) that is routed causes
packet rates in applicable nodes in the tree to be updated;
starting in the root, and going down to the deepest avail-
able node. This works as follows. The first byte of the
IP destinationaddress of aforward packetis used as an
index in the root node to find the record in which to up-
date theto-rate. For reverse packetsthe first byte of the
IP sourceaddress is used as an index in the root node
to find the record in which to update thefrom-rate. If
the record has a child, the process descends down to the
child and continues. If no child exists, it is created if ei-
ther the from-rate or the to-rate exceeds a certain thresh-
old. In any case, the process may follow the pointer in
the record to the child node. In this child node, thesec-
ondbyte of the IP address is used as an index to find the
record and update the packet rates. This process may de-
scend down to the deepest level in the tree where per-IP
address packet rates are kept. The full algorithm is given
in pseudo-code in Algorithm4.1.



Algorithm 4.1: UPDATE(addr, packet, fwd)

TABLE t ← root
for i ← 1 to 4

do



RECORD r← t[addr[i]]
if fwd

then update r’s to-rate
elseupdate r’s from-rate

if r has no child node
then break

t← r’s child node
annotate packet with r’s from-rate and to-rate (1)
if (r’s from-rate> threshold
or r’s to-rate> threshold)
and t is not a node in deepest level of tree
then create child table t’ under r

Method UPDATE() is called by method
HANDLE PACKET() described in Section5.2. Pa-
rameteraddr is the 4-byte IP source or destination
address of packetpacket, depending on whether MUL-
TOPS is set up in victim-oriented or attacker-oriented
mode. Parameterfwd tells UPDATE() whether this
packet is a forward packet or a reverse packet. State-
ment 1 immediately after thefor -loop annotates the
packet with r’s from-rate and to-rate. This annotation
can later be used by a part of the system that implements
the heuristic to determine whether or not this packet is
part of a malicious flow and should, thus, be dropped.

4.5 Expansion and contraction

If the to-rate or the from-rate for an address with ann-bit
prefixP exceeds theexpand threshold, MULTOPS cre-
ates a child node under the record for prefixP to keep
track of packet rates for addresses with(n+8)-bit prefix
P ′. Lowering this expand threshold increases precision
of MULTOPS, but also increases its memory use. Fig-
ure3 shows how a new node is added to the tree to keep
track of all packet rates to and from addresses with prefix
130.16.120.

The reverse of expansion is contraction. Contracting a
record involves removing a subtree from under a record.
A subtree is contracted when the aggregate packet rate
for that subtree drops belowRmax. Contraction is done
to constrain memory use and to avoid (maliciously in-
tended) memory exhaustion. Figure3 shows how a node
is contracted.

130.16.120.*

CONTRACT

EXPAND

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

16.128.*.*

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

16.128.*.* 130.16.*.*

130.16.*.0

Figure 3: Expansion and contraction

Traversing the entire tree in search of subtrees to con-
tract is potentially expensive and its frequency should
be chosen with care. Traversing the tree for everyx
routed packets is dangerous because a router should have
its resources free for routing, not for contracting when
packet rates go up. Traversing the tree everyt ms is
safer, but choosingt correctly is tricky: if t is too high,
memory might run out before traversal starts. The strat-
egy we chose is to never allocate more memory than
a certain limitm—thereby making memory exhaustion
impossible—and to traverse the tree everytms in search
of subtrees to contract. In the time period between reach-
ing memory limitm and the next “cleanup,” MULTOPS
cannot create new nodes. It is, therefore, important to
chooset low, but not so low as to trigger cleanups too
often and, thus, waste the router’s resources.

An attacker might try to launch a memory exhaustion
attack against MULTOPS by causing it to branch pro-
fusely. The two opposing forces are the attacker causing
nodes to be created versus contraction causing nodes to
be destroyed. Since a subtree is contracted when the
packet rates to and from addresses with a certain prefix
are less than the expand threshold, the attacker will have
to sustain a higher packet rate for as many different ad-
dress prefixes as possible. Section5.4 deals with this
issue in a quantitative context.



5 MULTOPS implementation

MULTOPS is implemented using Click [KMC+00].
Click is a modular software router architecture devel-
oped at the MIT Laboratory for Computer Science. A
Click router is an interconnected collection of mod-
ules called elements. Each element performs a simple,
straightforward task such as communicating with de-
vices, queueing packets, and implementing a dropping
policy. Each element has 0 or more inputs and 0 or more
outputs. Inputs are used to receive packets from other el-
ements. Outputs are used to hand off packets to other el-
ements. Configuration of a Click router is done by feed-
ing it a file describing which elements to use and how
the inputs and outputs of these elements interconnect.

MULTOPS is implemented as 2 separate elements:
IPRateMonitor and RatioBlocker . Adding
these elements to the configuration adds the MULTOPS
detection mechanism and the related dropping policy
to the router. IPRateMonitor tags each packet
with from-rate and to-rate such thatRatioBlocker
may decide to drop the packet based on these tags
and based on the defined thresholds (i.e.,Rmin and
Rmax). Thus,IPRateMonitor implements the tree,
RatioBlocker implements a dropping policy based
on the MULTOPS detection heuristic.

IPRateMonitor has 2 inputs and 2 outputs. Each in-
put should be connected to a different physical network
interface.RatioBlocker has 1 input and 1 output.

5.1 Data structure

IPRateMonitor is a C++ class that defines two pri-
vatestruct s: Record andTable . Figure5.1 con-
tains the C++ code that defined thesestruct s.

from_rate and to_rate in Record are used to
store packet rates.EWMAimplements an exponentially
weighted moving average and is used to keep track of
rates.child contains a pointer to a child orNULL if no
child exists. Besides 256 pointers toRecord , Table
contains a pointer to the parent record (parent ) and
two pointers (prev andnext ) that are used to main-
tain a doubly-linked list of nodes—their use is explained
in Section5.3. root points to the root node.

struct Record {
EWMA from_rate;
EWMA to_rate;
Table *child;

};

struct Table {
Record *parent;
Table *prev, *next;
Record* record[256];

};

Table *root; // root node

Figure 4: C++ code that definesRecord andTable

5.2 Algorithm

IPRateMonitor ’s method HANDLE PACKET()
(given in pseudo-code in Algorithm5.1) implements
the functionality represented by Figure1. It is, together
with methodUPDATE(), responsible for implementing
the algorithm described in Section4.4.

Algorithm 5.1: HANDLE PACKET(port, packet)

if port == 0
then UPDATE(packet.destaddr, packet, true)
elseUPDATE(packet.srcaddr, packet, false)

IPRateMonitor ’s 2 input ports should each be log-
ically connected to one of the network interfaces. Port
0 connects to the interface for forward packets, port 1
connects to the interface for reverse packets. (This is
achieved through Click configuration.)port is the input
of theIPRateMonitor element that packetpacket ar-
rived on. This information is passed toUPDATE() using
its fwd parameter.

5.3 Expansion and contraction

In addition to the tree itself, MULTOPS maintains a
doubly-linked list of pointers to nodes in the tree using
prev andnext in Table . Each time a new node is
created in the tree, i.e., expansion occurs, a pointer to
that node is added at the end of the linked list. During
a cleanup, the list is traversed. A node (and all its chil-
dren) is deleted when the sum of all from-rates and the



sum of all to-rates in that node are both lower than the
expand threshold. (Both sums are, by definition, stored
as from-rate and to-rate in the parent record of that node;
hence the need for theparent pointer inTable .) The
root node is never deleted. The list is either traversed
backwards or forwards to avoid checking the same nodes
every time thereby causing starvation-like phenomena.

To avoid heavy memory fluctuations and to avoid spend-
ing too much time on a single cleanup, contraction stops
when a certain fractionf of all allocated memory has
been freed. If none of the nodes can be deleted, but
memory is at its imposed maximum, then some nodes
mustbe deleted. In that case, the expand threshold is de-
creased by some factor and the cleanup starts again. This
may have to be repeated multiple times until fractionf
of all memory has been freed.

5.4 Memory exhaustion attacks

To defeat our mechanism, an attacker may try to ex-
haust a router’s memory by makingIPRateMonitor
allocate many nodes. (Of course, memory exhaustion is
only possible whenIPRateMonitor has no imposed
memory limit.) An attacker achieves this by sending
packets with a wide variety of spoofed IP source ad-
dresses through that router. (This is a problem only when
MULTOPS is in attacker-oriented mode.) Each stream
of packets with a common IP source address needs to
have a bandwidth higher than the expand threshold of
MULTOPS—otherwise MULTOPS contracts the nodes,
thereby defeating the attacker’s goal to run it out of
memory. If an attacker is not bound by any resource
constraints, nor by ingress/egress filtering, he can cre-
ate a worst-case scenario by sending spoofed IP packets
such that the number of nodes in MULTOPS is maxi-
mized.

Given the structure of the MULTOPS tree, the size of a
Table (1040 bytes), the size of aRecord (28 bytes),
a packet size of 34 bytes, and an expand threshold of
1000 packets per second, an attacker, launching such a
worst-case scenario memory exhaustion attack, needs to
generate traffic with a bandwidth of roughly 16 Gbit/s to
make IPRateMonitor allocate 128MB of memory,
provided that the network has the physical capability to
carry this traffic to the target router. This number was
derived by calculating the amount of allocated memory
based on the number of different address prefixes stored
in the tree. The expand threshold can be set to a value
that ensures that memory will never run out. It is safe to
conclude that, even without an imposed memory limit, it
is impossible to runIPRateMonitor out of memory.

6 Measurements

To measure the performance ofIPRateMonitor , a
simple Click configuration was run in a Linux kernel
2.2.16 on an off-the-shelf PC (700 Mhz Pentium III, 256
KB cache, 256 MB memory) that sends packets through
an IPRateMonitor element. Bogus UDP packets
were generated by Click itself to avoid time consuming
interaction with network interfaces. IP spoofing attack-
ers were simulated by generating UDP packets with an
IP source address picked from a fixed set of IP addresses
in round-robin fashion. Measurements were done for
different memory limits and for an expand threshold of
0, i.e., maximum expansion.
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Figure 5: Packet rate as a function of memory limit

The graph in Figure5 shows the number of packets that
IPRateMonitor can handle as a function of its im-
posed memory limit. The graph shows this for 5 UDP
flood attacks that differ only in the number of attackers
(i.e., IP source addresses) involved. The IP source ad-
dresses used in the malicious UDP packets constitute a
worst-case scenario (see Section5.4).

The graph shows thatIPRateMonitor performs bet-
ter when it has little memory at its disposal. A small
tree fits in cache entirely and is, therefore, fast. When
more memory is available, the tree size increases up to
the point where it is too big to fit in cache, and cache
misses result. The performance ofIPRateMonitor
for 256, 512, and 1024 addresses is roughly the same
(270,000 packets/sec), because in these cases the tree
is small enough to fit in cache entirely. For 2048 and
4096 addresses, rates drop proportional to the total mem-
ory consumption of the tree, up to the point where
the tree reaches its maximum size, after which mem-
ory consumption—and thus performance—fluctuates
around the same point.
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Figure 6: CPU cycles per packet as a function of mem-
ory limit

The graph in Figure6 shows the number of CPU cycles
that IPRateMonitor consumes per packet as a func-
tion of its imposed memory limit.IPRateMonitor
consumes more CPU cycles when it has more memory
at its disposal. These extra cycles are, most likely, spent
on waiting for a memory fetch after a cache miss. Un-
surprisingly, the graph in Figure6 is essentially the re-
ciprocal of the graph in Figure5.

IPRateMonitor performs better when it has little
memory at its disposal. Unfortunately, its ability to ex-
pand and, therefore, to precisely determine the source(s)
and/or target(s) of the attack, is also more limited. Thus,
the tradeoff is precision vs. performance.

7 Discussion

7.1 IP spoofing

MULTOPS in victim-oriented mode is not influenced by
IP spoofing. However, MULTOPS may impose “collat-
eral damage” by dropping legitimate packets going to
the victim.

When attackers randomize IP source addresses—a com-
mon practice—then a problem arises for MULTOPS in
attacker-oriented mode. There could be so many differ-
ent (spoofed) IP source addresses that MULTOPS does
not have enough available memory to establish all “ma-
licious” IP source addresses. In that case, MULTOPS
can establish a set of prefixes that malicious IP source
addresses share. Better randomization implies shorter
address prefixes. Shorter prefixes implies that MUL-

TOPS drops more packets, which may include legitimate
packets. In other words: collateral damage as a result of
MULTOPS’ dropping policy is greater when IP spoofing
gets more randomized.

When attackersperfectlyrandomize IP source addresses,
each malicious stream of packets with a common IP
source address (or prefix) is either too insignificant to
be seen as part of an attack, orall malicious streams
are seen as part of an attack. In the former case, MUL-
TOPS does not detect the attack at all. In the latter case,
all packets are considered part of an attack, and, hence,
dropped. Both cases constitute a successful denial-of-
service attack.

7.2 Distribution

The IP spoofing problem described above closely relates
to the problem of attacker distribution. As more (spoof-
ing or non-spoofing) attackers participate in a bandwidth
attack, it becomes harder (for MULTOPS in attacker-
oriented mode) to identify a single attacker because its
relative share in the total mass becomes smaller and,
therefore, the disproportional quality of the traffic less
conspicuous.

When a total number ofT packets per second is required
to crash the victim’s infrastructure, andN attackers par-
ticipate, then each attacker needs to generate an average
of T/N packets per second. AsN gets larger,T/N gets
smaller.

Even though MULTOPS’ sensitivity can be tuned, if
N is too large and, consequently,T/N too small, one
single attacker might go undetected by MULTOPS. If,
though, attackers do not spread out geographically, their
combined generated traffic might go through a single
MULTOPS-equipped router that could decide to drop
all the packets. Evenif the attackers are perfectly dis-
tributed throughout the world, the malicious packets get
funneled on their way to the victim by routers. The
chance of being detected as a malicious stream by one of
these routers gets larger as the stream gets more bundled
(and, thus, packet rates become more disproportional).

7.3 Different protocols

MULTOPS relies on the assumption that, during nor-
mal operations, packet rates between two communicat-
ing parties are proportional. There are, however, differ-
ent protocols, each with different implementations. With



TCP, for example, implementations differ in their ac-
knowledgment policy, although most TCP implementa-
tions acknowledge at least every other packet. Nonethe-
less, defining the MULTOPS detection heuristic quan-
titatively, i.e., choosing suitable values forRmin and
Rmax, is tricky. In the current implementation of
RatioBlocker , Rmin = 0.66, andRmax = 2.5.
These values were experimentally determined. One can
imagine implementing aRatioBlocker that adjusts
these values based on observed traffic patterns during
normal operations, making the heuristic more flexible.

Protocols such as UDP and ICMP do not require ac-
knowledgments at all. However, several applications
such as NFS and DNS display proportional behavior
similar to TCP, which is advantageous for the MUL-
TOPS detection heuristic. Since most services on the
Internet are TCP-based, we suggest rate-limiting all non-
TCP traffic during an attack. Even though this is a dras-
tic measure, it will allow most Internet traffic to proceed
normally.

7.4 Asymmetric routes

MULTOPS needs to see traffic in both directions to de-
tect disproportional packet rates—this requires symmet-
ric routes. However, Paxson demonstrated that many
routes on the Internet are asymmetric [Pax97]. To cir-
cumvent this problem, MULTOPS should be placed on
the edges of the network—in a data center, for exam-
ple. If such a site is multi-homed, then packet rate
statistics from all on-site routers need to be combined.
This requires (preferably out of band) communication
between several MULTOPS-equipped routers. The de-
tails of such a setup are beyond the scope of this paper.

7.5 Granularity

When MULTOPS has more memory at its disposal, it
can expand to deeper levels, thereby increasing its preci-
sion. Dropping packets based on disproportional packet
rates in a record in the root node will affect many ma-
chines, i.e., all machines with a common first byte in
their IP address. If, however, dropping packets is done
based on disproportional packet rates from/to a single
IP address—stored in the deepest level of the tree—then
only the machine with that IP address will be affected. It
is, therefore, important to not restrict MULTOPS’ mem-
ory use too much.

8 Conclusion

This paper proposes MULTOPS. MULTOPS enables
routers or network monitors to detect ongoing band-
width attacks using a simple heuristic: a significant, dis-
proportional difference between the packet rate going to
and coming from a host or subnet. This is based on the
assumption that, during normal operations on the Inter-
net, the packet rate of traffic going in one direction is
proportional to the packet rate of traffic going in the op-
posite direction.

MULTOPS is a tree of nodes that contains packet rate
statistics for subnet prefixes at different aggregation lev-
els. It dynamically adapts its shape to (1) reflect changes
in packet rates, and (2) avoid (maliciously intended)
memory exhaustion.

MULTOPS successfully detects bandwidth attacks
that create disproportional packet flows between the
sender(s) and the receiver. To our knowledge, no such
detection mechanism has been proposed yet. Depending
on the situation, MULTOPS can point out the source(s)
of the attack.

MULTOPS is not a complete solution against bandwidth
attacks. However, it enables network devices to maintain
statistics to establish whether or not a bandwidth attack
may be going on.

Measurements show that the performance of MULTOPS
is primarily influenced by the size of the cache and the
number of IP source addresses involved in the attack.
It is exceedingly difficult to run a MULTOPS-equipped
router out of memory.
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